Highly compressible 3D periodic graphene aerogel microlattices

نویسندگان

  • Cheng Zhu
  • T Yong-Jin Han
  • Eric B Duoss
  • Alexandra M Golobic
  • Joshua D Kuntz
  • Christopher M Spadaccini
  • Marcus A Worsley
چکیده

Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimi...

متن کامل

Superelastic Graphene Aerogel/Poly(3,4-Ethylenedioxythiophene)/MnO2 Composite as Compression-Tolerant Electrode for Electrochemical Capacitors

Ultra-compressible electrodes with high electrochemical performance, reversible compressibility and extreme durability are in high demand in compression-tolerant energy storage devices. Herein, an ultra-compressible ternary composite was synthesized by successively electrodepositing poly(3,4-ethylenedioxythiophene) (PEDOT) and MnO2 into the superelastic graphene aerogel (SEGA). In SEGA/PEDOT/Mn...

متن کامل

A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aer...

متن کامل

Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.

Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density, and these properties have been exploited in nanotube-based foams and aerogels. However, all nanotube-based foams and aerogels developed so far undergo structural colla...

متن کامل

Three-dimensional N,B-doped graphene aerogel as a synergistically enhanced metal-free catalyst for the oxygen reduction reaction.

Here, a novel N,B-doped graphene aerogel, abbreviated as N,B-GA, was obtained via a two-step approach and served as a metal-free catalyst for the oxygen reduction reaction (ORR). This two-step method involved a hydrothermal reaction and a pyrolysis procedure, guaranteeing the efficient insertion of the heteroatoms. The resulting three-dimensional (3D) N,B-GA obtained at pyrolysis temperature of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015